
AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor
Rev. 1 — 25 April 2023 Application note

Document information
Information Content

Keywords AN13799, lwIP, i.MX 8MM, Cortex-M

Abstract This document describes how to use the lightweight TCP/IP (lwIP) stack on the Arm Cortex-M
core of the i.MX 8M Mini processor, running without an operating system (bare-metal) or with
FreeRTOS.

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

1 Introduction

This document describes how to use the lightweight TCP/IP (lwIP) stack on the Arm Cortex-M core of the i.MX
8M Mini processor, running without an operating system (bare-metal) or with FreeRTOS.

Lightweight TCP/IP (lwIP) is an open source TCP/IP stack. The main purpose of this stack implementation is
to reduce resource usage, while still having a full-scale TCP. This makes lwIP suitable for use in embedded
systems, which have limited memory size.

1.1 Software environment
A host PC running a recent version of Ubuntu is assumed.

• Install the Real Time Edge Software 2.4.0 environment.
• Build the Real-time Edge Image (using Yocto environment). For more details on how to do that, see Section

5.5 from the Real-Time Edge Software User Guide (document REALTIMEEDGEUG).
• Write the resulting nxp-image-real-time-edge-imx8mm-lpddr4-evk.wic.bz2 complete image

(this can be found in the <yocto_build_directory>/tmp/deploy/images/imx8mm-lpddr4-evk/
directory) on an SD card.

Note: Check your card reader partition and replace sd<x> with your corresponding partition.

$ bzcat nxp-image-real-time-edge-imx8mm-lpddr4-evk.wic.bz2 | sudo dd of=/dev/
sd<x> bs=1M

1.2 Hardware setup and equipment
• Development kit: NXP i.MX 8MM EVK LPDDR4
• Micro SD card: SanDisk Ultra 32 GB Micro SDHC I Class 10 is used for the current experiment
• Micro-USB cable for the debug port
• Ethernet cable

2 Prerequisites

• Install CMake:

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake –-version

• Install the GCC Arm embedded toolchain:
Note: Install version 10.3, because the newest 12.2 version does not work properly at the moment of writing
this document.

$ mkdir ~/gcc_compiler
$ cd ~/gcc_compiler
$ wget -v https://developer.arm.com/-/media/Files/downloads/gnu-
rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2
$ tar -xf gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point
to the Arm GCC embedded toolchain installation path. For this example, the path is ~/gcc_compiler/gcc-
arm-none-eabi-10.3-2021.10. Add the below line to ~/.bashrc file.

export ARMGCC_DIR=~/gcc_compiler/gcc-arm-none-eabi-10.3-2021.10

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
2 / 14

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE
https://www.nxp.com/docs/en/user-guide/REALTIMEEDGEUG_Rev2.4.pdf

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

• Download MCUXpresso SDK
On the Linux host machine, download the MCUXpresso SDK - a package designed to simplify and accelerate
application development with Arm Cortex-M-based devices.
Note: Both Git and West must be installed to download the MCUXpresso SDK.
After the installation of Git and West, execute the following commands to achieve the whole SDK delivery at
revision MCUX_2.12.0 and place it in the mcuxsdk-2.12.0 folder.

$ west init -m https://github.com/NXPmicro/mcux-sdk --mr MCUX_2.12.0
 mcuxsdk-2.12.0
$ cd mcuxsdk-2.12.0
$ west update

3 Disable Ethernet driver from U-Boot and Linux Kernel

To use the Ethernet on Cortex-M core, the Cortex-M core must have exclusive access to the peripheral. The
Ethernet access should be disabled from U-Boot and Linux kernel.

3.1 Disable Ethernet driver from U-Boot
To disable the Ethernet driver from U-Boot, follow the steps below:

1. Add the following lines at the end of the U-Boot device tree file:
Location: <yocto_build_directory>tmp/work/imx8mm_lpddr4_evk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8mm-evk.dts

&fec1
{
 status = “disabled”;
};

2. Recompile the U-Boot.

$ bitbake -f -c compile u-boot-imx
$ bitbake u-boot-imx imx-boot

3. Copy the new U-Boot image on the SD card.

$ dd if=imx-boot-imx8mm-lpddr4-evk-sd.bin-flash_evk of=/dev/sd<x> bs=1k
 seek=33 conv=fsync

Note: The storage location may vary. Adjust the sd<x> parameter to point to the SD card location.

3.2 Disable Ethernet driver from Linux Kernel
To disable the Ethernet driver from Linux kernel, follow the steps below:

1. Add the following lines at the end of the kernel device tree:
Location: <yocto_build_directory>/tmp/work-shared/imx8mm-lpddr4-evk/kernel-source/
arch/arm64/boot/dts/freescale/imx8mm-evk-rpmsg.dts

&fec1
{
 status = “disabled”;
};

2. Recompile the kernel:

$ bitbake -f -c compile virtual/kernel
$ bitbake virtual/kernel

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
3 / 14

https://github.com/git-guides/install-git
https://docs.zephyrproject.org/3.1.0/develop/west/install.html
https://github.com/NXPmicro/mcux-sdk

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

3. Copy the new device tree and the kernel image to the SD boot partition (first (FAT) partition):
Note: The built image is located in the <yocto_build_directory>/tmp/deploy/images/imx8mm-
lpddr4-evk folder.

$ sudo mount /dev/sd<x>1 /mnt
$ cp imx8mm-evk-rpmsg.dtb /mnt
$ cp Image /mnt
$ umount /mnt

Note: The storage location may vary. Adjust the mounted partition accordingly.
4. Now, you can again check the new image by booting the board. The Ethernet interface should not be

available in Linux.

$ ip addr

4 lwIP integration and usage

For convenience, the patches are prepared. The patches are located here.

• Download the lwIP stack and place it into the ~/mcuxsdk-2.12.0/middleware folder:

$ cd ~/mcuxsdk-2.12.0/middleware
$ git clone https://github.com/lwip-tcpip/lwip.git
$ git checkout 239918ccc173cb2c2a62f41a40fd893f57faf1d6

Note: The checkout is optional. It brings the exact version on which the patch was developed, but it should
work on the latest master.

• Download the imx8m_lwip_port.patch patch and apply it to the lwip directory. This fetches the port
support for i.MX 8M (bare-metal lwIP and with FreeRTOS):

$ cd lwip
$ wget https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/
imx8m_lwip_port.patch
$ git apply --whitespace=nowarn imx8m_lwip_port.patch

• Download the imx8mm_lwip_examples.patch patch and apply it to the example folder. This fetches the
usage examples for i.MX 8MM:

$ cd ~/mcuxsdk-2.12.0/examples
$ wget https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/
imx8mm_lwip_examples.patch
$ git apply --whitespace=nowarn imx8mm_lwip_examples.patch

• The four examples are now in the ~/mcuxsdk-2.12.0/examples/evkmimx8mm/lwip_examples folder.

4.1 Application structure
The following four examples of lwIP usage are in the lwip_examples folder:

• The lwip_ping is an example of a ping sender that can be used as a start point to maintain an opened
network connection.

• The lwip_tcpecho example is a TCP echo server.
• The lwip_udpecho example is a UDP echo server.
• The lwip_mqtt example is an MQTT client subscriber.

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
4 / 14

https://github.com/nxp-imx-support/lwip_demo
https://github.com/lwip-tcpip/lwip.git
https://github.com/nxp-imx-support/lwip_demo/blob/master/imx8m_lwip_port.patch
https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/imx8m_lwip_port.patch
https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/imx8m_lwip_port.patch
https://github.com/nxp-imx-support/lwip_demo/blob/master/imx8mm_lwip_examples.patch
https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/imx8mm_lwip_examples.patch
https://raw.githubusercontent.com/nxp-imx-support/lwip_demo/master/imx8mm_lwip_examples.patch

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

Figure 1. Application folder structure

The generic structure of a FreeRTOS application is in Figure 1. For bare-metal, the FreeRTOSConfig.h file is
not included.

• The include folder contains the lwipopts.h file. It is used to overwrite the default configuration of the lwIP,
located in the lwip/src/include/lwip/opt.h folder. The application-specific options are defined here.

• The lwip_tcpecho_freertos.c file contains the main application. The TCP/IP stack uses the Ethernet
driver implementation in ~/mcuxsdk-2.12.0/core/drivers/enet. The implementation of the PHY driver
is in ~/mcuxsdk-2.12.0/core/components/phy.

• The armgcc folder is the build directory that contains the project and the linker file
(MIMX8MM6xxxxx_cm4_ram.ld and MIMX8MM6xxxxx_cm4_ddr_ram.ld):
– The CMakeLists.txt file is used by cmake to automatically generate the Makefile.

The files used for lwIP porting are in middleware/lwip/port.

4.2 Building the examples
The four examples described above are built in the same way. The examples are built in order to run either in
TCM (Tightly Coupled Memory), or in DDR. For building the bare-metal application, go to bm/armgcc directory.
For building the FreeRTOS applications, go to freertos/armgcc directory. In the armgcc directory, four
building scripts (two of them for TCM, and two of them for DDR) can be found.

1. Change the folder to the example application project folder, which has a path similar to the following:

<install_dir>/examples/evkmimx8mm/lwip_examples/<application_name>/<op_sys>/
armgcc

2. To perform the build, run the build script in the command line. The output is as follows:

$./build_release.sh
-- TOOLCHAIN_DIR: /home/user/gcc_compiler/gcc-arm-none-eabi-10.3-2021.10
-- BUILD_TYPE: release
-- TOOLCHAIN_DIR: /home/user/gcc_compiler/gcc-arm-none-eabi-10.3-2021.10
-- BUILD_TYPE: release
-- The ASM compiler identification is GNU
-- Found assembler: /home/user/gcc_compiler/gcc-arm-none-eabi-10.3-2021.10/
bin/arm-none-eabi-gcc
-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/mcuxsdk-2.12.0/examples/
evkmimx8mm/lwip_examples/lwip_tcp_udp_responder/bm/armgcc
Scanning dependencies of target lwipcore

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
5 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

[1%] Building C object CmakeFiles/lwipcore.dir/home/user/mcuxsdk-2.12.0/
middleware/lwip/src/core/init.c.obj
[1%] Building C object CmakeFiles/lwipcore.dir/home/user/mcuxsdk-2.12.0/
middleware/lwip/src/core/inet_chksum.c.obj
[2%] Building C object CmakeFiles/lwipcore.dir/home/user/mcuxsdk-2.12.0/
middleware/lwip/src/core/dns.c.obj
< -- skipping lines -- >
[100%] Building C object CmakeFiles/lwip_ping_bm.elf.dir/home/user/
mcuxsdk-2.12.0/core/drivers/gpt/fsl_gpt.c.obj
[100%] Linking C executable release/lwip_ping_bm.elf
Memory region Used Size Region Size %age Used
 m_interrupts: 576 B 576 B 100.00%
 m_text: 78040 B 130496 B 59.80%
 m_data: 10096 B 128 KB 7.70%
 m_data2: 12416 B 16 MB 0.07%
[100%] Built target lwip_ping_bm.elf

This script compiles the project and creates the release folder, which contains the *.bin and *.elf files.
Note: To print the additional debug messages, use the build_debug.sh script. This script creates the
debug folder, which contains the resulting binary file.

3. Copy the binary file to the first (FAT) partition of the SD card (similar to the image copying in Section 3.2).

4.3 Run the applications using U-Boot
Connect the i.MX 8MM platform to the host Ubuntu PC via USB cable between the DEBUG USB-UART
connector and the PC USB connector. The Ubuntu OS finds the serial devices automatically.

To determine your debug port, find the TTY device with name /dev/ttyUSB*. One port is for the debug messages
from the Cortex-A53, and the other is for the Cortex-M4. The port number is allocated randomly, so opening
both is beneficial for development.

Open the serial device in your preferred serial terminal emulator (ex. PuTTY). Set the speed to 115200 bps, 8
data bits, 1 stop bit (115200, 8N1), and no parity.

• Before starting the Cortex-M core, connect the board to a PC via an Ethernet cable. Set the static IP address
of the PC:

$ ip addr add 192.168.11.2/24 dev eno1

Note: Replace the Ethernet device name according to your case.

4.3.1 Run the ping server application

• Boot the board and stop the execution in U-Boot: You can then write the image and run it from TCM or DRAM
with the following commands:
1. If the lwip_ping_bm.bin file is made from release target, which means the binary runs from TCM,

use the following commands to boot:

u-boot=> fatload mmc 1:1 0x48000000 lwip_ping_bm.bin
u-boot=> cp.b 0x48000000 0x7e0000 0x20000
u-boot=> bootaux 0x7e0000

2. If the lwip_ping_bm.bin file is made from ddr_release target, which means the binary file runs from
DRAM, use the following commands:

u-boot=> fatload mmc 1:1 0x80000000 lwip_ping_bm.bin
u-boot=> dcache flush
u-boot=> bootaux 0x80000000

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
6 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

For convenience, a U-Boot variable can be created, that stores the above commands for the subsequent
boot ups (example below for bare-metal):

u-boot=> setenv lwip "fatload mmc 1:1 0x48000000
lwip_ping_bm.bin; cp.b 0x48000000 0x7e0000 0x20000; bootaux 0x7e0000"

The binary can be loaded into the TCM/DDR and the Cortex-M core can be started using the following
command:

u-boot=> run lwip

Note: If the Linux OS kernel runs together with the M4 core, make sure that the correct dtb file is used.
This dtb file reserves the resources used by the M4 core and avoids the Linux kernel from configuring
them. Use the following command before running the kernel:

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb

• Test the application.
The ping application starts to send Ethernet packets immediately after the ENET initialization. To view these
packets on the connected PC, type the following command:

$ sudo tcpdump -v -i eno1

Note: Change the Ethernet interface name according to your case.
Figure 2 shows the output on the Cortex-M core, while running the application.

Figure 2. Text display of the ping_server demo

4.3.2 Run the TCP responder application

This application implements a TCP client that replies at each request from the server.

• Boot the board and stop the execution in U-Boot.
You can then write the image and run it from TCM or DRAM with the following commands:
1. If the lwip_tcpecho_bm.bin file is made from release target, which means the binary runs from

TCM, use the following commands to boot:

u-boot=> fatload mmc 1:1 0x48000000 lwip_tcpecho_bm.bin
u-boot=> cp.b 0x48000000 0x7e0000 0x20000
u-boot=> bootaux 0x7e0000

2. If the lwip_tcpecho_bm.bin file is made from ddr_release target, which means the binary file runs
from DRAM, use the following commands:

u-boot=> fatload mmc 1:1 0x80000000 lwip_tcpecho_bm.bin
u-boot=> dcache flush
u-boot=> bootaux 0x80000000

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
7 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

You can create a U-Boot variable that stores the above commands for the subsequent bootups:

u-boot=> setenv lwip "fatload mmc 1:1 0x48000000 lwip_tcpecho_bm.bin; cp.b
 0x48000000 0x7e0000 0x20000; bootaux 0x7e0000"
u-boot=> saveenv

The binary can be loaded into the TCM/DDR and the Cortex-M core can be started using the following
command:

u-boot=> run lwip

Note: If the Linux OS kernel runs together with the M4 core, make sure that the correct dtb file is used.
This dtb file reserves the resources used by the M4 core and avoids the Linux kernel from configuring
them. Use the following command before running the kernel:

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb

• Test the application:
Type the following commands on the PC:
– ping

$ ping 192.168.11.3

– nc (netcat)
Send TCP packets:

$ nc 192.168.11.3 7

Anything you type is echoed by the board.
Note: Do not change the number of the port. The TCP application is configured to listen and send on port
7.
Figure 3 shows the output on Cortex-M.

Figure 3. Text display of the tcp echo demo

4.3.3 Run the UDP responder application

This application implements a UDP client that replies at each request from the server.

• Boot the board and stop the execution in U-Boot.
You can then write the image and run it from TCM or DRAM with the following commands:
1. If the lwip_udpecho_bm.bin file is made from release target, which means the binary runs from

TCM, use the following commands to boot:

u-boot=> fatload mmc 1:1 0x48000000 lwip_udpecho_bm.bin
u-boot=> cp.b 0x48000000 0x7e0000 0x20000

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
8 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

u-boot=> bootaux 0x7e000

2. If the lwip_udpecho_bm.bin file is made from ddr_release target, which means the binary file runs
from DRAM, use the following commands:

u-boot=> fatload mmc 1:1 0x80000000 lwip_udpecho_bm.bin
u-boot=> dcache flush
u-boot=> bootaux 0x80000000

You can create a U-Boot variable that stores the above commands for the subsequent bootups:

u-boot=> setenv lwip "fatload mmc 1:1 0x48000000 lwip_udpecho_bm.bin; cp.b
 0x48000000 0x7e0000 0x20000; bootaux 0x7e0000"
u-boot=> saveenv

The binary can be loaded into the TCM/DDR and the Cortex-M core can be started using the following
command:

u-boot=> run lwip

Note: If the Linux OS kernel runs together with the M4 core, make sure that the correct dtb file is used.
This dtb file reserves the resources used by the M4 core and avoids the Linux kernel from configuring
them. Use the following command before running the kernel:

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb

• Test the application:
Type the following commands on the PC:
– ping

$ ping 192.168.11.3

– nc (netcat)
Send UDP packets:

$ nc -u 192.168.11.3 7

Anything you type is echoed by the board.
Note: Do not change the number of the port. The UDP application is configured to listen and send on port
7. Figure 4 shows the output on Cortex-M.

Figure 4. Text display of the udpecho demo

4.3.4 Run the MQTT client application

The MQTT (Message Queueing Telemetry Transport) is a protocol used for communication between IoT
devices. MQTT communication works as a publish and subscribe system. Some devices publish messages on

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
9 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

a specific topic and all devices that are subscribed to that topic receive the message. The MQTT broker is an
intermediary entity that receives messages published by clients, filters the messages by topic, and distributes
them to subscribers.

In this example, i.MX 8MM runs an MQTT client that is subscribed to two topics. On another machine, a second
client publishes the messages on these two topics.

4.3.4.1 MQTT broker

To get and start the MQTT broker on your PC, follow the steps below:

1. Before starting the MQTT example, install an MQTT broker on the connected PC. For this example, the
Mosquitto broker is used:

$ sudo apt-get update
$ sudo apt-get install mosquitto
$ sudo apt-get install mosquitto-clients

2. Create the mosquitto.config configuration file and include the following lines:

listener 1883
allow_anonymous true

3. Start the MQTT broker:

$ mosquitto -c mosquitto.config

4.3.4.2 MQTT client

• Boot the board and stop the execution in U-Boot:
You can then write the image and run it from TCM or DRAM with the following commands:
1. If the lwip_mqtt_bm.bin file is made from release target, which means the binary runs from TCM,

use the following commands to boot:

u-boot=> fatload mmc 1:1 0x48000000 lwip_mqtt_bm.bin
u-boot=> cp.b 0x48000000 0x7e0000 0x20000
u-boot=> bootaux 0x7e0000

2. If the lwip_mqtt_bm.bin file is made from ddr_release target, which means the binary file runs from
DRAM, use the following commands:

u-boot=> fatload mmc 1:1 0x80000000 lwip_mqtt_bm.bin
u-boot=> dcache flush
u-boot=> bootaux 0x80000000

You can create a U-Boot variable that stores the above commands for the subsequent bootups:

u-boot=> setenv lwip "fatload mmc 1:1 0x48000000 lwip_mqtt_bm.bin; cp.b
 0x48000000 0x7e0000 0x20000; bootaux 0x7e0000"
u-boot=> saveenv

The binary can be loaded into the TCM/DDR and the Cortex-M core can be started using the following
command:

u-boot=> run lwip

Note: If the Linux OS kernel runs together with the M4 core, make sure that the correct dtb file is used.
This dtb file reserves the resources used by the M4 core and avoids the Linux kernel from configuring
them. Use the following command before running the kernel:

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
10 / 14

https://mosquitto.org/

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

• Test the application:
In this example, the client is subscribed to the topic_qos1 and topic_qos0 topics. The client receives all
messages published with one of these two topics. To publish messages, use the following command on a PC,
but in a new terminal:

$ mosquitto_pub -t ‘topic_qos0’ -m ‘Test topic_qos0’
$ mosquitto_pub -t ‘topic_qos1’ -m ‘Test topic_qos1’

Figure 5 shows the output on the Cortex-M core:

Figure 5. Text display of the mqtt_client demo

5 Revision history

Table 1 summarizes the changes done to this document since the initial release.

Revision number Date Substantive changes

1 25 April 2022 • Updated Section 1.1, Section 2,
Section 3.2, Section 4, Section 4.1,
Section 4.2, Section 4.3.1,
Section 4.3.2, and Section 4.3.4.2

• Added Section 4.3.3
• Made few editorial changes

0 06 December 2022 Initial release

Table 1. Revision history

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
11 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

6 Legal information

6.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

6.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
12 / 14

mailto:PSIRT@nxp.com

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.

AN13799 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 25 April 2023
13 / 14

NXP Semiconductors AN13799
Using Lightweight TCP/IP on Cortex-M core of i.MX 8MM Processor

Contents
1 Introduction ... 2
1.1 Software environment ..2
1.2 Hardware setup and equipment 2
2 Prerequisites ..2
3 Disable Ethernet driver from U-Boot and

Linux Kernel .. 3
3.1 Disable Ethernet driver from U-Boot3
3.2 Disable Ethernet driver from Linux Kernel 3
4 lwIP integration and usage 4
4.1 Application structure .. 4
4.2 Building the examples 5
4.3 Run the applications using U-Boot 6
4.3.1 Run the ping server application6
4.3.2 Run the TCP responder application7
4.3.3 Run the UDP responder application 8
4.3.4 Run the MQTT client application 9
4.3.4.1 MQTT broker ... 10
4.3.4.2 MQTT client ... 10
5 Revision history .. 11
6 Legal information ..12

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 25 April 2023
Document identifier: AN13799

	1 Introduction
	1.1 Software environment
	1.2 Hardware setup and equipment

	2 Prerequisites
	3 Disable Ethernet driver from U-Boot and Linux Kernel
	3.1 Disable Ethernet driver from U-Boot
	3.2 Disable Ethernet driver from Linux Kernel

	4 lwIP integration and usage
	4.1 Application structure
	4.2 Building the examples
	4.3 Run the applications using U-Boot
	4.3.1 Run the ping server application
	4.3.2 Run the TCP responder application
	4.3.3 Run the UDP responder application
	4.3.4 Run the MQTT client application
	4.3.4.1 MQTT broker
	4.3.4.2 MQTT client

	5 Revision history
	6 Legal information
	Contents

