
Freescale Semiconductor
Application Note

Document Number: AN4485
Rev. 0, 04/2011

Contents

Introduction . 1
 Block diagram. 3
Module functions . 5

3.1 PWM capability . 5
3.2 PWM synchronization . 13
3.3 Fractional delay logic. 14
3.4 Fault protection . 15
3.5 Enhanced capture capability 17
3.6 ADC triggering. 18
Design considerations . 20
Conclusion. 21

Using eFlexPWM with
MC56F82xx DSC
by: Richy Ye

Applications Engineering
Shanghai
1 Introduction
The enhanced flexible pulse width modulator
(eFlexPWM) module contains PWM submodules, each
of which is set up to control a single half-bridge power
stage. Fault channel support is provided. The eFlexPWM
module can generate various PWM modes, including
highly sophisticated waveforms, which can be used to
control all known motor types and is ideal for controlling
different switching mode power supply (SMPS)
topologies as well.

The eFlexPWM module has these main features:

• 16 bits of resolution for center-, edge-aligned,
and asymmetrical PWMs

• Fractional delay for enhanced resolution of the
PWM period and duty cycle

• PWM outputs that can operate as complementary
pairs or as independent channels

• Ability to accept signed numbers for PWM
generation

1
2
3

4
5

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Introduction
• Independent control of both rising and falling edges of each PWM output

• Support for synchronization to external hardware or other PWMs

• Double-buffered PWM registers

— Integral reload rate 1–16

— Half-cycle reload capability

• Multiple output trigger events can be generated per PWM cycle via hardware

• Support for double switching PWM outputs

• Fault inputs can be assigned to control multiple PWM outputs

• Programmable filters for fault inputs

• Independently programmable PWM output polarity

• Independent top and bottom hardware deadtime insertion

• Each complementary pair can operate with its own PWM frequency and deadtime values

• Individual software control for each PWM output

• All outputs can be programmed to change status simultaneously via a FORCE_OUT event

• PWMX pin can optionally output a third PWM signal from each submodule (please refer to the pin
assignment table of the respective device to see which pin is used for this purpose)

• Channels not used for PWM generation can be used for buffered output compare functions

• Channels not used for PWM generation can be used for input capture functions with enhanced
dual-edge capture capability (please refer to information in respective chapter of reference manual
to see which submodules include this function)

• Option to supply the source for each complementary PWM signal pair from:

— Crossbar module outputs

— External ADC input, taking into account values set in ADC high- and low-limit registers

This document includes a module introduction, block diagram, module functions, and design
considerations.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor2

Block diagram
2 Block diagram

Figure 1. Block diagram of PWM module

The MC56F82xx's eFlexPWM module contains four submodules (each submodule has its own time base)
and has one fault channel, fault channel zero, which accommodates four distinct fault inputs. Each
FAULTx pin can be mapped arbitrarily to control any combination of the PWM outputs.

By default, submodule 0 is regarded as the master for internal synchronization control. Control signals
MASTER RELOAD, MASTER FORCE, MASTER SYNC, and AUX CLOCK are output only by
submodule 0, and received by other submodules (1/2/3) or external components. Alternatively, these four
submodules can be controlled and synchronized together by external signals EXT_SYNC, EXT_FORCE,
and EXT_CLK. In addition, each submodule can generate independent output trigger signals to trigger
events in other components, and an interrupt signal for a CPU interrupt response.

Table 1 identifies PWM feature support that varies by submodule (SM).
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 3

Block diagram
Please note that only the auxiliary PWM signal of submodule3, PWMX3, is enabled to pinout in the
MC56F82xx. Also, signals FAULT[n], PWM[n]_EXT_SYNC, EXT_FORCE, PWM[n]_EXTA,
PWM[n]_EXTB, EXT_CLK, and PWM[n]_OUT_TRIGx, where n can be 0, 1, 2 or 3 and x can be 0 or 1,
cannot be found from the pin description table in the data sheet, but may be configured for a wide range
of intermodule connections via the crossbar module.

Figure 2. Block diagram of submodule

Figure 2 specifies the PWM submodule details. In each case, two comparators and associated VALx
registers are utilized for each PWM output signal. One comparator and VALx register are used to control
the turn-on edge, while a second comparator and VALx register control the turn-off edge. The generation
of the local sync signal is performed exactly the same way as the other PWM signals in the submodule.
While comparator 0 causes a rising edge of the local sync signal, comparator 1 generates a falling edge.
Comparator 1 is also hardwired to the reload logic to generate the full cycle reload indicator.

Table 1. PWM submodule feature support

Submodule Fractional delay (high resolution) Enhanced input capture

SM0, SM1, SM2 Yes No

SM3 No Yes (1-level FIFO depth)
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor4

Module functions
If VAL1 is controlling the modulus of the counter and VAL0 is half of the VAL1 register minus the INIT
value, then the half-cycle reload pulse will occur exactly halfway through the timer count period and the
local sync will have a 50% duty cycle. On the other hand, if the VAL1 and VAL0 registers are not required
for register reloading or counter initialization, they can be used to modulate the duty cycle of the local sync
signal, effectively turning it into an auxiliary PWM signal (PWMX), assuming that the PWMX pin is not
being used for another function such as input capture or deadtime distortion correction. Including the local
sync signal, each submodule is capable of generating three PWM signals where software has complete
control over each edge of each of the signals.

If the comparators and edge value registers are not required for PWM generation, they can also be used
for other functions such as output compares, generating output triggers, or generating interrupts at timed
intervals. The 16-bit comparators shown in Figure 2 are “equal to or greater than,” not just “equal to,”
comparators. In addition, if both the set and reset of the flip-flop are asserted, then the flop output goes to 0.

3 Module functions
This section describes the implementation of various functions in the eFlexPWM module in detail,
including PWM capability, ADC trigger, enhanced capture, PWM synchronization, and fault protection.

3.1 PWM capability
MC56F82xx's eFlexPWM module contains four submodules, each of which has its own time base and
PWM capability. They can work independently of each other or in synchronization. In this section only
one submodule is used as an example.

3.1.1 Edge-aligned PWM

An edge-aligned PWM provides a single PWM signal where one out of two edges of the PWM is aligned
to the period boundary, and the other edge is determined by the duty cycle. As Figure 3 shows, this allows
maximum duty cycle resolution using an edge-aligned PWM, because the PWM duty cycle can be changed
per PWM clock.

Figure 3. Edge-aligned PWM example (INIT = VAL2 = VAL4)
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 5

Module functions
For an edge-aligned PWM on MC56F82xx, the turn-on edge value (VAL2, VAL4) for each pulse is
specified to be the INIT value. Therefore only the turn-off edge value (VAL3, VAL5) needs to be updated
to change the duty cycle. The code for an edge-aligned PWM can be found in the software available with
this application note.

The edge-aligned PWM is usually used for single power switch converters, such as BUCK, BOOST, and
Flyback converters, etc.

3.1.2 Center-aligned PWM

Center-aligned PWM provides a single PWM signal where half of the PWM period appears before a center
point, and the other half after the center point. As Figure 4 shows, it will reduce 1-bit duty cycle resolution,
because the PWM duty cycle can only be changed twice per PWM clock.

Figure 4. Center-aligned PWM example

For a center-aligned PWM on MC56F82xx, the center point is specified to be half the value of the sum of
the INIT value and VAL1. Therefore the turn-on edge value (VAL2, VAL4) for each pulse needs to be
updated so that the difference between center point and turn-on edge is half of the duty cycle. Then the
turn-off edge value (VAL3, VAL5) also needs to be updated so that the difference between turn-off edge
and center point is half of the duty cycle.

If all PWM signal edge calculations follow this same convention, then the signals will be center-aligned
with respect to each other. Of course, center alignment between the signals is not restricted to symmetry
around the zero count value, as any other number would also work. However, centering on zero provides
the greatest range in signed mode and also simplifies the calculations. The code for center-aligned PWM
can be found in the software available with this application note.

The center-aligned PWM is usually used for multiple power switches or multi-phase converters, such as
half-bridge and full-bridge inverter, etc. Using it will greatly improve system EMI and THD.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor6

Module functions
3.1.3 Complementary PWM

Complementary PWM provides a PWM output signal on one pin with the complement of the PWM signal
on the other output pin (thus providing a pair of complementary channels). As Figure 5 shows,
complementary operation allows use of the deadtime insertion feature to avoid shooting through.

Figure 5. Complementary PWM example (with deadtime insertion)

For complementary PWM on MC56F82xx, writing a logic zero to CTRL2[INDEP] configures the PWM
output as a pair of complementary channels. The PWM pins are paired between PWMxA and PWMxB in
complementary channel operation. MCTRL[IPOL] determines which signal is connected to the output pin
(PWM23 or PWM45). The code for complementary PWM can be found in the software available with this
application note.

Complementary PWM is usually used for converters with a bridge leg, such as synchronously switched
BUCK, half-bridge, and full-bridge converters, etc.

3.1.4 Push-pull PWM

Push-pull PWM means that a standard PWM output signal goes out on one pin, then the PWM signal (same
duty cycle) goes to the other output pin on the next cycle, then the process repeats. The cycle is shown in
Figure 6.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 7

Module functions
Figure 6. Push-pull PWM example

When using push-pull PWM on MC56F82xx, writing a logic one to CTRL2[INDEP] configures the PWM
output as independent channels. The active PWM signal of PWMxA should lie in the former half of the
PWM cycle, so that inequality is assured: initial value (INIT)  turn-on edge value (VAL2)  turn-off edge
value (VAL3)  half period point value ((VAL1+INIT)/2). Similarly, in order to output the active PWM
signal of PWMxB in the second half of the PWM cycle, then the values must be:

half-period point value ((VAL1+INIT)/2)  turn-on edge value (VAL4)  turn-off edge value
(VAL5)  period value (VAL1)

Also, the offset must be kept as half of the PWM period for two turn-on edges (VAL2 and VAL4) and two
turn-off edges (VAL3 and VAL5) separately. The code for push-pull PWM can be found in the software
available with this application note.

The push-pull PWM is usually used for DC to AC inverters with isolated transformer, such as push-pull,
half-bridge, and full-bridge converters, etc.

3.1.5 Multi-phase PWM

Multi-phase PWM allows multiple PWM generators to output PWM signals that are synchronized but
constantly shift phase relative to each other, as shown in Figure 7.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor8

Module functions
Figure 7. Multi-phase PWM example

When using multi-phase PWM on MC56F82xx, in order to keep time base synchronization among the
different phases of the PWM signals, the same initialization control signal must be selected by all PWM
submodules. This means that if the master submodule (submodule 0) selects the local sync signal as its
initialization control signal, the slave submodules (submodules 1/2/3) should select the master signal
(master reload or sync signal) to initialize their counters, or else all submodules will all select the same
external sync signal as their initialization control signal. Also, it is important that the phase offsets be set
up to evenly distribute the phase shift among the different phases of the PWM signals.

As shown in Figure 7, there are three pairs of PWM signals, so the phase offset among the three pairs of
PWM signals should be set to one third of the PWM period,. This means that there is one-third of PWM
period phase difference among center point of each pair PWM signals ((PWM2_VAL3+PWM2_VAL2)/2
– (PWM1_VAL3+PWM1_VAL2)/2 = (PWM1_VAL3+PWM1_VAL2)/2 –
(PWM0_VAL3+PWM0_VAL2)/2 = (VAL1-INIT)/3) if center-aligned PWM mode is used. If
edge-aligned PWM mode is used, there is one-third of PWM period phase difference among edge (turn-on
edge or turn-off edge) of each pair of PWM signals (PWM2_VAL3(VAL2) – PWM1_VAL3(VAL2) =
PWM1_VAL3(VAL2) – PWM0_VAL3(VAL2) = (VAL1-INIT)/3). The code for multi-phase PWM can be
found in the software available with this application note.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 9

Module functions
Multi-phase PWM is usually used for multi-phase converters with two, three, four, or more phases, such
as interleaved BUCK, interleaved BOOST and interleaved flyback converters, etc.

3.1.6 Phase-shifted PWM

Phase-shifted PWM is similar to multi-phase PWM, but the phase relationships are constantly changing.
In general, phase-shifted PWM is always set to 50% duty cycle, as shown in Figure 8.

Figure 8. Phase-shifted PWM example

For phase-shifted PWM on MC56F82xx, in order to keep time base synchronization among different
phases PWM signals, the same initialization control signal must be selected by all PWM submodules. This
means that if the master submodule (submodule 0) selects the local sync signal as its initialization control
signal, the slave submodules (submodule 1/2/3) should select the master signal (master reload or sync
signal) to initialize their counters, or else all submodules will all select the same external sync signal as
their initialization control signal. Also, it is important that the duty cycle of each PWM signal pair be kept
unchanged.

As shown in Figure 8, there are two pairs of PWM signals. The first pair of PWM signals (PWM0A,
PWM0B) are kept fixed, and the phase relationship between the two pairs of PWM signals is changed only
by changing the phase of the secondary pair PWM signals (PWM1A, PWM1B). This means that there is
an identical phase offset (phase-shifted quantum) between turn-on edges and turn-off edges of each pair
of PWM signals (PWM1_VAL2-PWM0_VAL2 = PWM1_VAL3-PWM0_VAL3 = required phase-shifted
quantum). The code for phase-shifted PWM can be found in the software available with this application
note.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor10

Module functions
The phase-shifted PWM is usually used for ZVT converters, such as a full-bridge ZVT converter.

3.1.7 Current-limit PWM

Current-limit PWM mode is a variation of standard fixed-frequency PWM where the turn-on time is
truncated when the current reaches a desired maximum value, as shown in Figure 9.

Figure 9. Current-limit PWM example

For current-limit PWM on MC56F82xx, the turn-on edge value (VAL2) is specified to be the INIT value.
Then the turn-off edge value (VAL3) is set to a fixed value large enough to meet actual maximum turn-on
time requirement. In order to truncate the turn-on time when the current reaches a desired maximum value,
an internal comparator can be used to disable the PWM output, where the comparator output will be used
as the fault input of the PWM module. Automatic clearing mode with only full cycle clearing timing
should be selected for fault clearing mode in the PWM module. The code for current-limit PWM can be
found in the software available with this application note.

The current-limit PWM is usually used for a peak-current-controlled converter, such as peak current
controlled phase-shifted full-bridge converter, which uses the combination of phase-shifted PWM mode
and current-limit PWM mode to drive power MOSFETs. This automatically prevents the output
transformer from saturation, which eliminates the need for a capacitor to block DC current. And it should
be noted that a subharmonic oscillation issue exists in the control loop when the output inductor current
increases to a value so high that it can’t return to its initial value in one PWM cycle. At this moment, an
algorithm, called slope compensation, is usually used to correct this issue.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 11

Module functions
Therefore, a 12-bit DAC on MC56F82xx can be used to implement the slope compensation algorithm
using its automatic waveform generation function (down-counting sawtooth waveform). The maximum
value of the sawtooth waveform is from the output of the output voltage loop of the phase-shifted
full-bridge converter — the minimal value and step will be determined by the desired slope rate, PWM
cycle, and DAC updating rate. Then the DAC output is used as the desired maximum value of the output
inductor current (if the step is large, an external capacitor can be added on the DAC output pin to smooth
DAC output), and connected to the input of an internal comparator, which is used to disable the
corresponding PWM output when the actual output inductor current reaches the desired maximum value.

3.1.8 Current-reset PWM

Current-reset PWM mode is a variable frequency mode where the turn-on time is specified, and the turn-off
time is truncated when current falls below a desired minimum value, as shown in Figure 10.

Figure 10. Current-reset PWM example

For current-reset PWM on MC56F82xx, the turn-on edge value (VAL2) is specified to be the INIT value.
The turn-off edge value (VAL3) is also specified to assure that the programmed turn-on time is a fixed
value. In order to truncate the turn-off time when current falls below a desired minimal value, an internal
comparator can be used to initialize the PWM counter. The comparator output will be used as the external
sync signal input of the PWM module, and EXT_SYNC should be selected as the initialization control
source in the PWM module. The code for current-reset PWM can be found in the software available with
this application note.

The current-reset PWM is usually used for transition mode (critical current mode) PFC converters, and
will greatly improve converter efficiency in low-power applications. The combination of current-limit
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor12

Module functions
PWM mode and current-reset PWM mode is used in a transition mode PFC converter for better
performance.

3.2 PWM synchronization

Figure 11. Submodule timer synchronization

The 16-bit counter shown in Figure 11 can be initialized with an INIT value by four possible sources: local
sync, master reload, master sync, and EXT_SYNC.

If local sync is selected as the counter initialization signal, the counter will count up until its output equals
VAL1. VAL1 is used to specify the counter modulus value, then VAL1 within the submodule effectively
controls the timer period (and thus the PWM frequency generated by that submodule) and everything
works on a local level. If the master sync signal (which originates as the local sync from submodule0) is
configured to initialize the counter, then the counter period of any submodule can be locked to the period
of the counter in submodule0. Then the VAL1 register and associated comparator of the other submodules
can be freed up for other functions such as PWM generation, input captures, output compares, or output
triggers.

If the master reload signal (which only originates from submodule0) is selected as the source for counter
initialization, then the period of the counter of any submodule will be locked to the reload frequency of
submodule0. Since the reload frequency is optional and can vary from one to sixteen, it will support
generating multi-frequency PWM signals in synchronization.

If the EXT_SYNC signal (which originates on-chip or off-chip depending on the system architecture) is
selected as the source for counter initialization, the counter period in all submodules can be controlled by
an external source. This makes it easy to implement synchronization between the eFlexPWM module and
the external signal.

In addition, the counter can optionally be initialized upon the assertion of the FORCE_OUT signal (which
is provided mainly for synchronous switching of multiple PWM outputs), assuming that CTRL2[FRCEN]
is set. As indicated by the preceding figure, this constitutes a second initialization input into the counter.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 13

Module functions
This will cause the counter to initialize regardless of which signal is selected as the counter initialization
signal.

In summary, if multiple PWMs with the same frequency are required to synchronize, the master sync
signal (submodule0 selects local sync for counter initialization) is recommended to initialize the counters
in slave submodules (submodule1/2/3) if all PWM signals are from internal submodules. Otherwise, the
EXT_SYNC signal is recommended to initialize the counters in all submodules when some PWM signals
are from another PWM module or are off-chip. If it is necessary to synchronize multiple PWMs with
different frequencies, two methods are recommended.

• Method one:

1. Configure the highest frequency PWM signal from submodule0 (which uses local sync to initialize
the counter for internal PWM synchronization, or EXT_SYNC for external PWM
synchronization).

2. Select master reload (reload rate depends on the frequency ratio of different PWMs) signal for
counter initialization in slave submodules (submodule1/2/3).

• Method two:

1. Select local sync to initialize counters for those submodules which generate the higher frequency
PWM signals.

2. Configure their FORCE source as master sync signal (submodule0 is configured to generate lowest
frequency PWMs) or EXT_FORCE signal (other slave submodule is configured to generate lowest
frequency PWMs — this submodule is required to output a local sync trigger as an EXT_FORCE
signal input for other submodules).

3. Configure the submodule (which generates lowest frequency PWMs) to select local sync to
initialize the counter for internal PWM synchronization, or EXT_SYNC for external PWM
synchronization.

3.3 Fractional delay logic
For applications requiring greater resolution than a single IPBus clock period (up to 16.67 ns), the
fractional delay logic can achieve fine resolution on the rising and falling edges of the PWM outputs. Use
the PWM_SMn_FRCTRL register (where n is 0, 1, or 2) to enable the fractional delay logic only where
needed. The FRACVALx registers (highest five bits are used) act as a fractional clock cycle (IPBus clock
period/25, up to 520.8 ps) addition to the turn-on and turn-off count specified by the VAL2, VAL3, VAL4,
or VAL5 registers. The FRACVAL1 register acts as a fractional increase in the PWM period as defined by
VAL1.

For example, assume the following conditions:

INIT = 0x00

VAL1 = 0x0F

VAL2 = 0x00

VAL3 = 0x07

FRACVAL3 = 0x00
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor14

Module functions
these settings would cause the PWM output to have a 50% duty cycle: it would be high from a count value
of 0x00 (VAL2) to 0x07 (VAL3), at which point it would go low until the counter reaches the maximum
value of 0x0F (VAL1). If FRACVAL3 were set to a value of 0xB800 (real value is 0x17), then the time the
PWM output is active would be:

8 cycles + (23/32) cycles = 8.719 cycles

for a high duty cycle of:

(8.719 cycles/16 cycles)  100% = 54.49%

Another case involves fine tuning the PWM period using the FRACVAL1 register. If a PWM period of
100.25 clock cycles is required, program VAL1 with 0x64 and FRACVAL1 with 0x4000. In this case, the
fractional value accumulates so that every four PWM cycles are one clock cycle longer (101 instead of
100). The rising and falling edges of the PWM outputs also use the accumulated fraction to delay their
edges and maintain a consistent spacing of 100.25 cycles between corresponding edges, from one cycle to
the next.

In order to enable a high-resolution PWM function (fractional delay logic), two independent registers
(VALx and FRACVALx, where x is 1, 2, 3, 4, or 5) must be programmed to get the desired duty cycle and
period. An example can be found, in the software available with this application note, of variable duty
cycle and period PWM with high-resolution function, developed to show how to simply set the two
registers.

3.4 Fault protection
Fault protection can control any combination of PWM output pins. Faults are generated by a logic one on
any of the FAULTx pins. This polarity can be changed via FCTRL[FLVL]. Each FAULTx pin can be
mapped arbitrarily to any of the PWM outputs. When fault protection hardware disables PWM outputs,
the PWM generator continues to run, but the output pins are forced to logic 0, logic 1, or tri-state depending
on the value of SMnOCTRL[PWMxFS].

3.4.1 Automatic fault clearing

When FCTRL[FAUTOx] is set, disabled PWM pins are enabled when the FAULTx pin returns to logic
zero and a new PWM full or half-cycle begins. See Figure 12 — if FSTS[FFULLx] is set, then the disabled
PWM pins are enabled only at the start of a full cycle and not at the half-cycle. Clearing FSTS[FFLAGx]
does not affect disabled PWM pins when FCTRL[FAUTOx] is set. This mode is very useful for
cycle-by-cycle protection, and has quicker response in half-cycle resolution, which will help improve
system dynamic response.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 15

Module functions
Figure 12. Automatic fault clearing example

3.4.2 Manual fault clearing

Clearing the automatic clearing mode bit, FCTRL[FAUTOx], configures faults from the FAULTx pin for
manual clearing:

• If the fault safety mode bits, FCTRL[FSAFEx], are clear, then PWM pins disabled by the FAULTx
pins are enabled when:

— Software clears the corresponding FSTS[FFLAGx] flag.

— The next PWM full or half cycle begins, regardless of the logic level detected by the filter at
the FAULTx pin. See Figure 13. If FSTS[FFULLx] is set, then the disabled PWM pins are
enabled only at the start of a full cycle and not at the half-cycle.

Figure 13. Manual fault clearing example (FCTRL[FSAFEx] = 0)

• If the fault safety mode bits, FCTRL[FSAFEx], are set, then PWM pins disabled by the FAULTx
pins are enabled when:

— •Software clears the corresponding FSTS[FFLAGx] flag.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor16

Module functions
— The filter detects a logic zero on the FAULTx pin at the start of the next PWM full or half-cycle
boundary (see Figure 14). If FSTS[FFULLx] is set, then the disabled PWM pins are enabled
only at the start of a full cycle and not at the half-cycle.

Figure 14. Manual fault clearing example (FCTRL[FSAFEx] = 1)

This mode is very useful for latch-up protection, and has flexible enable mode and quick response in
half-cycle resolution, which will help to improve system design flexibility and dynamic response.

3.5 Enhanced capture capability
When eFlexPWM submodule3 pins (PWM3A, PWM3B, PWM3X) aren’t being used for PWM
generation, they can be used to perform the input capture function. Commensurate with the idea of
controlling both edges of an output signal, the enhanced capture (E-capture) logic is designed to measure
both edges of an input signal. As a result, when a submodule pin is configured for input capture, the
CVALx/x+1 registers associated with that pin are used to record the edge values.

Figure 15 is a block diagram of the E-capture circuit. Upon entering the pin input, the signal is split into
two paths: one goes straight to a mux input where software can pass the signal directly to the capture logic
for processing. The other path connects the signal to an 8-bit counter which counts both the rising and
falling edges of the input signal. The output of this counter is compared to an 8-bit value that is specified
by the user (EDGCMPx) and when the two values are equal, the comparator generates a pulse that resets
the counter. This pulse is also supplied to the mux input where software can select it to be processed by
the capture logic. This feature allows the module to count a specified number of edge events and then
perform a capture and interrupt.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 17

Module functions
Figure 15. Block diagram of enhanced capture unit

Based on the mode selection, the mux selects either the pin input or the comparator output from the
counter/compare circuit to be processed by the capture logic. The selected signal is routed to two separate
capture circuits which work in tandem to capture sequential edges of the signal. The type of edge to be
captured by each circuit is determined by CAPTCTRLx[EDGx1] and CAPTCTRLx[EDGx0].

Also, controlling the operation of the capture circuits is the arming logic, which allows captures to be
performed in a free-running (continuous) or one-shot fashion. In free-running mode, the capture sequences
will be performed indefinitely. If both capture circuits are enabled, they will work together in a ping-pong
style where a capture event from one circuit leads to the arming of the other and vice-versa. In one-shot
mode, only one capture sequence will be performed. Similarly, if only capture circuits are enabled, the
capture event will occur on the enabled capture circuit. Both capture circuits are capable of generating an
interrupt to the CPU. The duty cycle meter code for E-capture function on PWM3X can be found in the
software available with this application note.

3.6 ADC triggering
In cases where timing of ADC triggering is critical, scheduling must be done as a hardware event instead
of by software. With the eFlexPWM module, multiple ADC triggers can be generated by the compare
output capability in hardware per PWM period without the need of another timer module. Figure 16 shows
how this is accomplished in a submodule. For example, when specifying complementary PWM mode
operation, only two edge comparators are required to generate the output PWM signals for a given
submodule. This means that the other comparators are free to perform other functions, such as a compare
output for an ADC trigger event. In this example, the software does not need to quickly respond after the
first triggering to set up other triggerings that must occur in the same PWM period.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor18

Module functions
Figure 16. Multiple output trigger generation in PWM period

Because each submodule has its own timer, it is possible for each submodule to run at a different frequency.
One of the possible options with the eFlexPWM module is to have one or more submodules running at a
lower frequency only to trigger outputs, but still synchronized to those timers in other submodules, which
are used to generate PWM signals. Figure 17 shows how this feature can be used to schedule ADC triggers
over multiple PWM periods. A suggested use for this configuration would be to use the lower-frequency
submodule to control the sampling points where multiple ADC triggers can now be scheduled over the
entire sampling period. In this figure, all submodule comparators are shown being used for ADC trigger
generation.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 19

Design considerations
Figure 17. Multiple output trigger generation over several PWM periods

4 Design considerations
Use the following list of considerations to ensure correct operation of the eFlexPWM module on
MC56F82xx:

• The PWM output pins are set to input ports with an internal weak pullup resistor (about 2.0 V) after
reset, or by default it is required to connect a strong external pulldown or pullup resistor (1–10 k)
close to the pin to ensure safety status under uncertain conditions.

• There are two methods to manually disable PWM outputs regardless of duty cycle and clock
settings:

— Disable PWM output by clearing corresponding bit of PWM_OUTEN, which will result in
tri-state output on the PWM pin.

— Disable PWM output by setting corresponding bit of PWM_MASK followed by a
FORCE_OUT event, which will result in logic zero output prior to output polarity on the PWM
pin.

• It is recommended to meet these boundary conditions for correct PWM generation:

INIT  VAL2 (VAL4), VAL3 (VAL5)  VAL1

• When variable frequency PWMs are required, it is recommended to keep INIT constant and change
frequency only through changing VAL1.

• When enabling high-resolution PWM (fractional delay logic) function:

— If automatically generating initialization code from Processor Expert in CodeWarrior v8.3,
there will be a wrong value assignment for the PWM_SMnFRCTRL register. The correct value
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor20

Conclusion
needs to be set according to the bit definition of the PWM_SMnFRCTRL register in the
reference manual. Otherwise incorrect PWM behavior may result.

— In order to assure correct high-resolution PWM generation, at least three integer PWM clock
(up to 60 MHz) cycle duration (except for deadtime) is required between the edge value
(VAL2, VAL3, VAL4, and VAL5) and the period boundary value (INIT and VAL1).

— If complementary high-resolution PWM mode (high resolution enabled for both duty cycle and
period) is specified, besides enabling fractional delay logic for the complementary PWM
channel, these conditions must also be met for correct PWM generation:

PWM_SMnFRACVAL2 = PWM_SMnFRACVAL5

PWM_SMnFRACVAL3 = PWM_SMnFRACVAL4

— If complementary high-resolution PWM mode is specified, and the inverted generated PWM
is selected as the source for deadtime generation, swap the programming for the turn-on edge
VAL2/FRACVAL2 (VAL4/FRACVAL4) and turn-off edge VAL3/FRACVAL3
(VAL5/FRACVAL5) registers to ensure correct PWM output.

5 Conclusion
This note summarizes the structure and functions of the eFlexPWM module on MC56F82xx DSC, and
provides example code to help better understand implementation of the functions, making it easy for users
to properly use this module in their projects. Finally, some design considerations are shared with users to
help them better use the module.

The example project was developed on the MC56F8257 with CodeWarrior v8.3 IDE. The macro of
MODE_SEL is designed to select different function routines in the project.
Using eFlexPWM with MC56F82xx DSC, Rev. 0

Freescale Semiconductor 21

Document Number: AN4485
Rev. 0
04/2011

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	1 Introduction
	2 Block diagram
	3 Module functions
	3.1 PWM capability
	3.1.1 Edge-aligned PWM
	3.1.2 Center-aligned PWM
	3.1.3 Complementary PWM
	3.1.4 Push-pull PWM
	3.1.5 Multi-phase PWM
	3.1.6 Phase-shifted PWM
	3.1.7 Current-limit PWM
	3.1.8 Current-reset PWM

	3.2 PWM synchronization
	3.3 Fractional delay logic
	3.4 Fault protection
	3.4.1 Automatic fault clearing
	3.4.2 Manual fault clearing

	3.5 Enhanced capture capability
	3.6 ADC triggering

	4 Design considerations
	5 Conclusion

